A GENERALIZED TRANSPORTATION MODEL
IN SOCIAL ASSISTANCE MANAGEMENT

BORLEA Diana*, CRISTESCU Gabriela*,
*Care Center for Elderly, Arad, ***Aurel Vlaicu*** University of Arad, România
Department of Mathematics,
dianab268@yahoo.com, gcristescu@inext.ro

Key words: multi-index transportation problem, supply optimization.

Abstract: The most common decision methods in choosing the method of supply in social assistance management is that of auction. Just one supplier is usually the winner, but one's offer is sometimes not the optimum version. The optimum should be considered not only in financial terms but also in time terms. We solve the problem of optimally managing the food and medical care supply by means of multi-index transportation model of tri-axial type. We use the algorithm of K. B. Haley [2] for problem solving, with a model of computation elaborated in Excel. The example we give refers to the optimization of the food supply of the network of Care Centers for Elderly in Arad County.

1. INTRODUCTION

The transportation problem solves one product supply problems. Generally in social assistance, the supply problems refer to more products as food, drugs, clothes, etc. Therefore the classical transportation problem is not enough. A multi-index transportation model is suitable in this framework. We deal with tri-axial problem [3], which contains three types of linear constraints.

The standard form of the model is, according to [1]:

\[f = \sum_{i} \sum_{j} \sum_{k} c_{ijk} x_{ijk} \rightarrow \min, \]

submitted to:

\[\sum_{k=1}^{p} x_{ijk} = a_{ij}, \quad i \in I, \quad j \in J, \quad (1) \]

\[\sum_{i=1}^{m} x_{ijk} = b_{jk}, \quad j \in J, \quad k \in K, \quad (2) \]

\[\sum_{j=1}^{n} x_{ijk} = c_{ik}, \quad i \in I, \quad k \in K, \quad (3) \]

\[x_{ijk} \geq 0, \quad i \in I, \quad j \in J, \quad k \in K \quad (4) \]

The terms on the right side should satisfy the conditions:

\[\sum_{j} a_{ij} = \sum_{k} c_{ik} = a_{i}, \quad i \in I, \quad (6) \]

\[\sum_{k=1}^{p} x_{ijk} = a_{ij}, \quad i \in I, \quad j \in J, \quad (7) \]

\[\sum_{j} b_{jk} = \sum_{i} c_{ik} = c_{k}, \quad k \in K, \quad (8) \]

\[\sum_{i} a_{i} = \sum_{j} b_{jk} = \sum_{k} c_{k} = S, \quad (9) \]

\[c_{ik} \geq 0, \quad a_{ij} > 0, \quad b_{jk} > 0, \quad c_{ik} > 0, \quad i \in I, \quad j \in J, \quad k \in K. \]
The following existence and optimality results have been proven in [2].

Theorem 1. If \(m, n, p > 1 \), then the number of the linear independent equations from the constraints of the model does never exceed the number of unknowns.

Theorem 2. The tri-axial problem has an infinity of admissible solutions.

Theorem 3. The tri-axial problem has at least an optimal solution.

Remark 4. The tri-axial transportation problem is non-degenerated if any program contains exactly
\[
M = mnp - (m - 1)(n - 1)(p - 1)
\]
values \(x_{ijk} > 0 \), the other ones being 0. If a program contains \(M - r \) values \(x_{ijk} > 0 \) \((r \in \mathbb{N} \geq 1)\) the problem is degenerated, having a multi-plane degeneration of order \(r \).

In order to determine an optimal program of a tri-axial transportation problem we use the Haley [2] procedure:

Step a. Determine a scale repartition using the recurrence formula
\[
u_{ij} + v_{jk} + w_{ik} = c_{ijk},
\]
which is admissible if the non-negativity conditions:
\[
x^o_{ijk} = \min(a_{ij} - \sum_{k=1}^{k-1} x^o_{ijk}, b_{jk} - \sum_{i=1}^{i-1} x^o_{ijk}, c_{ik} - \sum_{j=1}^{j-1} x^o_{ijk}) \geq 0, \quad i \in I, \; j \in J, \; k \in K.
\]
are fulfilled.

Step b. Verify the optimality of the solution extending the modified distributive method (see [1]) to this type of problems. To do that one solves the system (10), \(c_{ijk} \) being the costs corresponding to the values \(x_{ijk} > 0 \). As in case of a non-degenerate solution there are exactly
\[
M = mn + np + mp - (m + n + p - 1)
\]
values \(x_{ijk} > 0 \), and the system (10) has \(mn + np + mp \) unknowns, one consider arbitrary \(m + n + p - 1 \) unknowns equal to 0. So, the system (10) will ce compatible, with an unique solution. Then, one determines the costs
\[
\tilde{c}_{ijk} = u_{ij} + v_{jk} + w_{ik}
\]
corresponding to values \(x_{ijk} = 0 \).

The following situations are possible:
- If \(c_{ijk} > \tilde{c}_{ijk} \), for \(x_{ijk} = 0 \),
 \[c_{ijk} = \tilde{c}_{ijk}, \text{ for } x_{ijk} > 0,\]
 then the solution is optimal and unique.
- If \(c_{ijk} > \tilde{c}_{ijk} \), for \(x_{ijk} = 0 \),
 \[c_{ijk} = \tilde{c}_{ijk}, \text{ for some } x_{ijk} = 0,\]
 then the problem has an infinity of optimal solutions.
- If \(c_{ijk} < \tilde{c}_{ijk} \), for some \(x_{ijk} = 0 \)
 \[\text{then the solution is not optimal and may be improved.}\]

Step c. Improve the solution for each cycle corresponding to the cells in which
The optimality is verified after improving each cycle, which leads to huge calculus if there are numerous cells in which $c_{ijk} < c_{\bar{i}jk}$.

2. APPLICATION IN SOCIAL ASSISTANCE MANAGEMENT

We use the above described multi-index transportation problem for solving the problem of optimizing the process of food supply in case of the Care Centers for Elderly on Arad County area. In the framework of the Social Assistance Direction of Arad county, there are three subordinate budgetary centers: Center 1, Center 2 and Center 3. The Direction has to ensure the delivery of the necessary goods (foods, medicines, materials) to the subordinate centers.

The problem of delivery efficiency has three parts: ensuring the need of goods, reducing the delivery time and reducing the delivery costs. This article will solve the problem of ensuring the need of goods and reducing the delivery costs suggesting a shaping as a multidimensional transport issue. The suggested algorithm takes into consideration the upgrade of delivery regularity, minimizing the cost for each delivery trance fulfilled.

Next we are going to use the following notations:

- $i \in I$ - denomination given to the center of production / providers
- $j \in J$ - denomination given to the product (or to the assortment which is about to be sent)
- $k \in K$ - denomination given to the consumer center which has to get the product (or the assortment)
- a_{ij} - denomination given to the quantity of product j, available in the production center i;
- b_{jk} - denomination given to the quantity of product j, necessary to the consumer center k;
- c_{ik} - denomination given to the quantity of products which are to be sent from the producing center i to the consumer center k;
- a_l - denomination given to the whole quantity of those n products available in the production center i;
- b_j - designation given to the quantity of product j available in the production centers m;
- c_k - designation given to the whole quantity of that n product necessary to the consumer center k;
- c_{ijk} - designation given to the delivery cost for one piece of the product j, produced in the production center l and sent to the consumer center k;
- x_{ijk} - designation given to the quantity of product j which is to be sent from the production center i to the consumer center k.

We are going to make an algorithm for each class of products mainly for food. For food supply have the following data:
• Three caterers:

<table>
<thead>
<tr>
<th>Name for the production center</th>
<th>Denomination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caterer A i=1</td>
<td></td>
</tr>
<tr>
<td>Caterer B i=2</td>
<td></td>
</tr>
<tr>
<td>Caterer C i=3</td>
<td></td>
</tr>
</tbody>
</table>

• Ten categories of products:

<table>
<thead>
<tr>
<th>Product name</th>
<th>Denomination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy products j=1</td>
<td></td>
</tr>
<tr>
<td>Poultry j=2</td>
<td></td>
</tr>
<tr>
<td>Pork j=3</td>
<td></td>
</tr>
<tr>
<td>Beef j=4</td>
<td></td>
</tr>
<tr>
<td>Breading products and pasta j=5</td>
<td></td>
</tr>
<tr>
<td>Vegetables j=6</td>
<td></td>
</tr>
<tr>
<td>Fruit j=7</td>
<td></td>
</tr>
<tr>
<td>Soft drinks j=8</td>
<td></td>
</tr>
<tr>
<td>Sweets and deserts j=9</td>
<td></td>
</tr>
<tr>
<td>Cans j=10</td>
<td></td>
</tr>
</tbody>
</table>

• Three consumer centers, Care Centers for Elderly of Arad County:

<table>
<thead>
<tr>
<th>Consumer center</th>
<th>Denomination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center 1 k=1</td>
<td></td>
</tr>
<tr>
<td>Center 2 k=2</td>
<td></td>
</tr>
<tr>
<td>Center 3 k=3</td>
<td></td>
</tr>
</tbody>
</table>

To determine a proper transport schedule we use the data from Table 1.

Step a. The determination of the initial solution:

Using the recurrence formula

\[x_{ijk}^* = \min(a_{ij} - \sum_{k=1}^{k-1} x_{ijk}^* ; b_{jk} - \sum_{i=1}^{i-1} x_{ijk}^* ; c_{ik} - \sum_{j=1}^{j-1} x_{ijk}^*) \geq 0 \]

we successively get:

\[x_{111}^* = \min(a_{11} ; b_{11} ; c_{11}) = \min(69, 23, 159) = 23 \]

\[x_{3103}^* = \min(a_{310} - \sum_{k=1}^{k-1} x_{310k}^* ; b_{103} - \sum_{i=1}^{i-1} x_{i103}^* ; c_{33} - \sum_{j=1}^{j-1} x_{3j3}^*) = \min(12, 12, 10) = 10 \]

The initial solution thus obtained in Table 2 leads us to the admissible solution.
This solution is not degenerated because it exactly contains:

\[M = mnp - (m - 1)(n - 1)(p - 1) = 90 - 36 = 54 \]

values \(x_{ijk}^o > 0 \), the other \(mnp - M = 90 - 54 = 36 \) values equal to 0.

Step b. Checking optimality:

We rewrite the costs \(c_{ijk} \) that correspond to the values \(x_{ijk}^o > 0 \) from the Table 1 into the Table 3 and solve the system:

\[u_{ij} + v_{jk} + w_{ik} = c_{ijk}; \quad i = \overline{1,3}; \quad j = \overline{1,10}; \quad k = \overline{1,3}. \]

As this system contains \(mnp = 90 \) unknowns and only \(M = 54 \) equations, as we considered in an arbitrary way:

\[
\begin{align*}
u_{12} &= 0, u_{13} = 0, u_{14} = 0, u_{15} = 0, u_{16} = 0, u_{17} = 0, u_{18} = 0, u_{19} = 0, u_{110} = 0; \\
u_{21} &= 0, u_{22} = 0, u_{23} = 0, u_{24} = 0, u_{25} = 0, \\
u_{26} &= 0, u_{27} = 0, u_{28} = 0, u_{29} = 0, u_{210} = 0; \\
w_{11} &= 0, w_{13} = 0, w_{21} = 0, w_{22} = 0, w_{23} = 0, w_{31} = 0, w_{33} = 0.
\end{align*}
\]

The other values \(u_{ij}, v_{jk}, w_{ik} \) are directly obtained in Table 3. Using the relation

\[c_{ijk} = u_{ij} + v_{jk} + w_{ik} \]

we can also determine the costs \(c_{ijk} \) that correspond to the 36 values \(x_{ijk}^o = 0 \).
The numbers highlighted in green in Table 4 represent the costs c_{ijk}, and the others the corresponding costs \bar{c}_{ijk}.

Having $c_{113} < \bar{c}_{113}$ (10<9) for $x^*_{113} = 0$, the initial solution in Table 2 is not optimal.

Step c. Improving the initial solution:
We determine the minimum $x^*_{ijk} > 0$ written in the even corners that correspond to cell c_{113}:

$$\min(25, 35, 46) = 25$$
Modifying this cycle we obtain a better solution in Table 5.

Checking the optimality of this solution we observe that it is proper because $c_{ijk} > \underline{c}_{ijk}$ for $x_{ijk} = 0$.

Problem T-3A admits an infinity of proper programs (minimums), but all these programs lead to the same minimum value of a: $\min f = 1737$.

The interpretation of the results from Table 5 is done like: $x^{*}_{111} = 10$ represents the quantity of diary products which is to be sent from Caterer A to Center 1, etc. The same procedure is applied for optimizing the delivery time.

The use of multi-index transportation model is more suitable than the linear programming, together with the related tool pack from Excel. The multi-index transportation problem is equivalent to a linear programming problem of enormous dimension. It is difficult to approach due to the large simplex table, which should be written, the most values being zero. Also, the volume of calculus involved considerably reduces when multi-index transportation model is used.

REFERENCES

